Self-cleansing peroxide mechanism to improve resilience and energy efficiency in microbial electrolysis cells (MECs)

WIRE INFRASTRUCTURE AND RESILIENCE WIRE

zabeth Heidrich¹ EPSRC Centre for Doctoral Training

Sam Settle¹, Richard Law¹, Andrew Moore², Elizabeth Heidrich¹

¹Newcastle University, ²Northumbrian Water Ltd

Context (1)

- Water and sewerage sector consumes 2-3% of the UK's electricity supply and produces around 4.35 million tonnes CO₂ equivalent of greenhouse gas emissions. The UK water sector aims to achieve net-zero carbon emissions before 2030.
- MECs are a promising biotechnology that can convert organic pollutants in wastewater (WW) into H_2 gas using an electroactive biofilm and a voltage input (> 0.14V)
- None of the MEC pilot-reactors operating with real WW have achieved an energy neutral or positive energy state due to low H_2 recoveries. A major H_2 sink is believed to be through H_2 scavenging microbes at the catholyte.
- This section of the research project aims to develop a sterilisation technique based on in-situ electrochemical H_2O_2 generation to eliminate the H_2 scavenging microbes to improve overall system resilience and energy efficiency.

 Power Supply (>0.14V)

Proposed methodology (3)

STABLE SYSTEM (Batch cycle 1 to 13 batch cycle): Electroactive biofilm acclimatised to anode surface. Stable H₂ production rate and high cathodic conversion efficiency (CCE) (moles of H₂ recovered divided by theoretical moles in measured current). No contamination of the catholyte by H₂ scavenging microbes. Data is theoretical to illustrate the concept.

SCAVENGING SYSTEM (Batch cycle 14 to 15): H₂ scavengers contaminate the catholyte. H₂ production rates decrease with cathodic coulombic efficiency as the end-product is diverted elsewhere.

PEROXIDE STERILISATION: Voltage is ramped down to 0.5V and aeration is applied to electrochemically generate H_2O_2 at the cathode. H_2 scavengers are eliminated.

STABLE SYSTEM (Batch cycle 16 onwards): Catholyte is sterilised. Input voltage ramps up to 0.8-1V to stimulate H_2 production. The resilience provided by the H_2O_2 mechanism is assessed in terms recovery time and the ability for the system to generate the same level or more H_2 and CCE compared to the preshock (contamination) state.

Likely Outputs (4

- A proof-of-concept study which examines the functionality of periodic sterilisation of the cathode chamber with electrochemically generated H₂O₂ to facilitate resilience against H₂-scavenging microbes and improve energy recovery.
- The study will provide greater insight into H_2 sinks within pilot-scale MEC modules and provide direction into addressing these.

For further information: s.settle2@newcastle.ac.uk Postal address: School of Engineering, Cassie Building, Newcastle-upon-Tyne, NE1 7RU

