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Kdecisions that could be informed by working with

Introduction

Water quality monitoring in drinking water distribution systems (DWDS) is
essential to ensure safe water delivery and evidence asset performance to
justify capital or operational investment.

It is widely believed that continuously monitoring water quality at high-
frequencies along DWDS can enhance network performance and resilience, yet
such results have yet to be realised. Challenges and barriers that are preventing

1. Vision and strategy

2. Quality of data measured
3. Data analysis

1. Vision and Strategy

Successful smart water strategies must start with a clear and well-defined
vision; why is monitoring required and how will the data be used. This vision
should inform operational strategy: what sensors are needed, how many, and
where; as well as the maintenance and data analysis requirements.

As smart water quality is a relatively new pursuit, there @

utilities from obtaining actionable information can be categorised into:

is a lack of evidence of what sort of outcomes are

possible. Without this knowledge, it is impossible to e

start with a clear vision and strategy. bt

This work will evidence the range and variety of ‘ ‘ ‘

multiple spatio-temporal data sets. -
Sensors link the physical and digital worlds, but they require domain
knowledge and skill to operate. This is perhaps even more critical for
sensitive water quality sensors typically deployed in underground

chambers when designed for lab environments. ’_@‘
Calibration, installation, and maintenance require an —
appreciation for the underlying sensing mechanism as eV 4
well as care and attention by trained professionals. — j
Undertaking pre and post deployment validation processes

L 4

and in-service sensor data checks can facilitate data quality assurance.
L 4

. Pre-deployment Validation -eeeeeeeeee,

Pre-deployment validation procedures are under investigation, usinga °
permanent reference turbidity sensor and handheld chlorine samples.
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Fig 1: lab validation setup for 5 turbidity (NTU) and chlorine (clg) sensors
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Sensors can be deployed with increased confidence
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.. after their performance is validated o
““-IIIIIIIIIIIIIIII In-SerVIce Valldatlon IIIIIIIIIIIIIIII....
= Chlorine sensors use membranes that can degrade and lose <

sensitivity.
Turbidity Sensors use optics that are sensitive to fouling.
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In-service data checks improve data quality by
’ informing sensor maintenance.
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3. Data Analysis

Water quality data has been used to determine asset performance,
including event detection, trend investigation and root-cause analysis.

* Examples below demonstrate the use of water quality data to infer
hydraulic transit times (Fig 3), detect anomalous events (Fig 4), and track
discolouration material (Fig 5).

.““- -------------- Hyd raulic Tra nsit Times ---------------- .....‘
N Time_lagged = 2 eeeee ; Chlorine Sensor Data | \ ‘:
correlation = S ﬂi AR Ji,MMwui‘*”*‘iAi I .

between sensors
infers network
connectivity and
hydraulic transit on

times, supporting <

S 0.6

hydraulic modelling

04

and tracking
network events.
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Fig 3: Top: 4 chlorine sensors. Bottom: Correlation curves
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Fig 5: material flux calculated for 2 sensors with Sensor
2 downstream of Sensor 1.

Summary

 The challenges and barriers preventing utilities from extracting actionable
information from newly available smart water quality technologies can be
overcome with well-defined vision and strategy, effective data quality
assurance, and targeted data analysis.

 This work is demonstrating the range and variety of decisions that can be

informed from analysing different spatio-temporal water quality data sets.

By evidencing what is possible, this work will enable the development of

clear project visions and strategies that will allow utilities to optimise their

use of smart water quality technologies. /
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