Characterisation Methods for Optimised Dissolved Organic Carbon (DOC) Removal from Potable Water

Daniel Ruth, Peter Jarvis, Bruce Jefferson - Canfield University Graeme Moore - Scottish Water; Ryan Pereira - Heriot Watt

- Tri-Halomethanes (THMs) are currently the main focus of regulatory bodies in Scotland (DWQR)
- Temporally and seasonally variable
- Regulated at 100µg/L with an aim to be keep under 50µg/L
- Online analysis required to ensure variability of raw water captured at treatment sites

- DOC correlates with the formation potential (FP) of THMs in raw water ($R^2 = 0.86$)
- Correlation weaker at higher concentrations likely due to more variable DOC character
- Further study into treated water concentration and THM-FP required to identify treatment link

- DOC varies across Scottish water treatment works (WTWs) with rainfall
- Rain events cause mobilisation of DOC in soils to leach into nearby tributaries
- Current methods do not allow for rapid reactions to concentration and character changes in the raw water leading to possible suboptimal treatment

DOC Removal from Raw Water

0 DOC DOC 0 Electrostatic repulsion Attractive forces overcomes Positive coagulant repulsion 0 **DOC** DOC Coagulation **Flocculation**

- DOC is removed by coagulation which is a charge based reaction
- Positively charged metal salts added to DOC-laden water
- These neutralise negative charge on DOC molecules
- DOC can then more easily flocculate and be removed
- Current methods do not monitor charge and miss the key removal mechanism which can identify optimal coagulation

Current Coagulant Dosing Practice

Online monitoring of UV254 absorbance (cm -1) of raw water at a WTWs

- Jar tests used to determine coagulant demand of raw water
- Performed infrequently using grab samples
- Misses rapidly changing water character and DOC concentrations
- Online instruments are needed to ensure a rapid response is available to water character changes
- Available online technique do not measure charge related parameters

Charge Analysis and Online Surrogate Measurement Method

sub/optimum coagulant doses to outline a mEq ratio and impacts of under/over dosing on treated water quality

Future work

- Validate findings at
- Compare results at
- Creation and implementation of a coagulant dosing algorithm based on surrogate

www.cdtwire.com

instruments installed at a live WTWs

